खगोल

कोई ग्रह कितना बड़ा (अर्थात त्रिज्या) हो सकता है?

कोई ग्रह कितना बड़ा (अर्थात त्रिज्या) हो सकता है?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

मुझे पता है कि सामान्य ग्रह बृहस्पति (या गर्म होने पर 2 बृहस्पति त्रिज्या) से बड़ा नहीं होता है, क्योंकि अधिक गैस जोड़ने से घनत्व बढ़ता है, त्रिज्या नहीं, जब तक कि आप भूरे रंग के बौने स्टार होने के बिंदु तक नहीं पहुंच जाते।

मुझे लगता है कि यह संपीड्यता, समग्र औसत सामग्री की एक संपत्ति है जो स्टार सिस्टम बनाती है, क्योंकि एक महत्वपूर्ण आकार से परे यह परिवेशी गैस के साथ-साथ बादल में धूल भी जमा करती है। यही है, यह ज्यादातर हाइड्रोजन और एक चौथाई हीलियम है जिसमें कुछ अन्य चीजें हैं।

लेकिन चट्टान या धातु जैसे अन्य सामानों से बने शरीर के बारे में क्या? ग्रह निर्माण प्रक्रियाओं की चिंता किए बिना, बस परमाणु एक साथ ढेर हो जाते हैं और आत्म-गुरुत्वाकर्षण महसूस करते हैं। शायद इसे धीरे-धीरे उगाया जाना चाहिए ताकि अधिक जोड़ने से पहले इसमें ठंडा होने का समय हो। अन्यथा, कोई विशेष तकनीक नहीं: क्या होगा यदि उपयुक्त संरचना की सामग्री को एक साथ ढेर कर दिया जाए?

मुझे संदेह है कि खनिजों के सामान्य विचार उस तरह के दबाव में मौजूद नहीं होंगे, भले ही सावधानी से ठंडा होने दिया जाए। लेकिन क्या H और He के अलावा अन्य तत्व अभी भी अपने आयतन को उसी तरह संकुचित कर सकते हैं, या एक चट्टानी दुनिया के आकार तक पहुँचने में सक्षम होगी लाखों मील का?

अधिक विदेशी मामलों के बारे में क्या, "पफी" ग्रह की तरह मैंने सुना है कि स्टायरोफोम का घनत्व है?


फूले हुए ग्रह बृहस्पति या शनि की तरह होते हैं, शायद बृहस्पति की तुलना में कम द्रव्यमान, शायद कम धात्विकता लेकिन सबसे महत्वपूर्ण कारक गर्मी है। या तो सूर्य के करीब या हाल ही में गठित। गर्मी गैस ग्रहों का विस्तार करती है। आप सही हैं कि जैसे ही आप अधिक द्रव्यमान जोड़ते हैं, बृहस्पति द्रव्यमान का ग्रह बड़ा नहीं होता है, लेकिन यदि पर्याप्त आंतरिक गर्मी है, तो गैस के विशाल ग्रह बृहस्पति से थोड़ा बड़ा हो सकते हैं। 2 बृहस्पति त्रिज्या के ग्रहों को देखा गया है (हालांकि उन अनुमानों में कुछ अशुद्धि है), लेकिन बृहस्पति से बड़ा बढ़ना काफी हद तक उच्च तापमान का कारक है।

चट्टानी दुनिया कभी भी बृहस्पति जितनी बड़ी नहीं होगी। अधिक से अधिक द्रव्यमान इसे रोकेगा, और एक निश्चित द्रव्यमान के बाद, एक चट्टानी दुनिया के रहने की संभावना नहीं है जिसे हम चट्टानी मानते हैं। एक निश्चित द्रव्यमान से ऊपर यह हाइड्रोजन पर धारण करता है जो ब्रह्मांड में सबसे प्रचुर मात्रा में गैस है, और यह विशाल चट्टानी दुनिया को एक गैस विशाल की तरह एक उपस्थिति देगा।

लेकिन सिद्धांत रूप में आपके प्रश्न का उत्तर देने के लिए, यदि आपके पास बृहस्पति द्रव्यमान और नगण्य वातावरण वाला एक चट्टानी दुनिया है, तो यह कभी भी बृहस्पति व्यास के करीब नहीं पहुंच सकता है। द्रव्यमान ग्रह के अंदर कुचल देता है। उदाहरण के लिए बुध पृथ्वी की तुलना में सघन पदार्थ से बना है। उच्च लौह सामग्री, लेकिन यह पृथ्वी की तुलना में कम घना है क्योंकि पृथ्वी का द्रव्यमान इसके चट्टानी आवरण और धात्विक कोर को कुचल देता है। जब आप एक बृहस्पति-द्रव्यमान चट्टानी दुनिया प्राप्त करना शुरू करते हैं, तो कुचलना महत्वपूर्ण हो जाता है और आप कभी भी बृहस्पति जितना बड़ा चट्टानी दुनिया नहीं बना सकते। हाइड्रोजन के साथ, यह एक निश्चित अधिकतम आकार तक पहुंच जाएगा, फिर गुरुत्वाकर्षण के क्रश के तहत छोटा होना शुरू हो जाएगा। यहां तक ​​​​कि तथाकथित "गैर-संकुचित" सामग्री, बड़े ग्रहों के अंदर दबाव में कॉम्पैक्ट होती है। लोहे का घनत्व 7.874 ग्राम/सेमी . है3 और उच्च तापमान पर उससे थोड़ा कम, लेकिन पृथ्वी के धात्विक कोर का घनत्व 12.6-13.0 है, और यह मुख्य रूप से कुचलने के कारण होता है। जब आप बृहस्पति द्रव्यमान तक पहुँच जाते हैं, तो क्रशिंग और घनत्व काफी अधिक होता है।

सूर्य के द्रव्यमान के बारे में ग्रह पृथ्वी से छोटा होगा, और यह मूल रूप से एक सफेद बौने तारे जैसा होगा, और अब एक चट्टानी दुनिया के रूप में अलग नहीं होगा।

यदि आवश्यक हो तो मैं इसका समर्थन करने के लिए कुछ लिंक जोड़ सकता हूं और यदि कोई गणित चलाना चाहता है या अधिक विवरण के साथ उत्तर देना चाहता है, तो बेझिझक।


किसी ग्रह की अधिकतम संभावित त्रिज्या शायद आज तक अज्ञात है क्योंकि वर्तमान अवलोकन तकनीक न केवल हमें ग्रह त्रिज्या के वितरण के बारे में एक पक्षपातपूर्ण दृष्टिकोण देगी बल्कि ग्रहों और भूरे रंग के बौनों को अलग करना भी मुश्किल है।

हालाँकि वर्तमान डेटा लगभग 2 बृहस्पति त्रिज्या की सीमा का सुझाव देता है।


बड़े एक्सोप्लैनेट में जीवन के लिए सही परिस्थितियां हो सकती हैं

खगोलविदों ने पृथ्वी के आकार के दोगुने से अधिक आकार के एक एक्सोप्लैनेट को संभावित रूप से रहने योग्य पाया है, जिससे पृथ्वी से काफी बड़े लेकिन नेपच्यून से छोटे ग्रहों के लिए जीवन की खोज शुरू हो गई है।

कैम्ब्रिज विश्वविद्यालय की एक टीम ने एक्सोप्लैनेट K2-18b के द्रव्यमान, त्रिज्या और वायुमंडलीय डेटा का उपयोग किया और यह निर्धारित किया कि ग्रह के लिए हाइड्रोजन युक्त वातावरण के नीचे रहने योग्य परिस्थितियों में तरल पानी की मेजबानी करना संभव है। परिणामों की सूचना reported में दी गई है द एस्ट्रोफिजिकल जर्नल लेटर्स.

एक्सोप्लैनेट K2-18b, 124 प्रकाश-वर्ष दूर, त्रिज्या का 2.6 गुना और पृथ्वी के द्रव्यमान का 8.6 गुना है, और रहने योग्य क्षेत्र के भीतर अपने तारे की परिक्रमा करता है, जहां तापमान तरल पानी के अस्तित्व की अनुमति दे सकता है। ग्रह 2019 की शरद ऋतु में महत्वपूर्ण मीडिया कवरेज का विषय था, क्योंकि दो अलग-अलग टीमों ने अपने हाइड्रोजन-समृद्ध वातावरण में जल वाष्प का पता लगाने की सूचना दी थी। हालांकि, वातावरण की सीमा और नीचे की आंतरिक स्थितियों की स्थिति अज्ञात रही।

कैम्ब्रिज इंस्टीट्यूट ऑफ एस्ट्रोनॉमी के डॉ निक्कू मधुसूदन ने कहा, "कई एक्सोप्लैनेट के वायुमंडल में जल वाष्प का पता चला है, लेकिन भले ही ग्रह रहने योग्य क्षेत्र में हो, लेकिन इसका मतलब यह नहीं है कि सतह पर रहने योग्य स्थितियां हैं।" , जिन्होंने नए शोध का नेतृत्व किया। "आवास के लिए संभावनाओं को स्थापित करने के लिए, ग्रह पर आंतरिक और वायुमंडलीय स्थितियों की एकीकृत समझ प्राप्त करना महत्वपूर्ण है - विशेष रूप से, क्या तरल पानी वायुमंडल के नीचे मौजूद हो सकता है।"

K2-18b के बड़े आकार को देखते हुए, यह सुझाव दिया गया है कि यह पृथ्वी के बड़े संस्करण की तुलना में नेपच्यून के छोटे संस्करण की तरह अधिक होगा। एक 'मिनी-नेप्च्यून' में उच्च दबाव वाले पानी की एक परत के चारों ओर एक महत्वपूर्ण हाइड्रोजन 'लिफाफा' होने की उम्मीद है, जिसमें चट्टान और लोहे की आंतरिक कोर होती है। यदि हाइड्रोजन लिफाफा बहुत मोटा है, तो नीचे की पानी की परत की सतह पर तापमान और दबाव जीवन का समर्थन करने के लिए बहुत अधिक होगा।

अब, मधुसूदन और उनकी टीम ने दिखाया है कि K2-18b के आकार के बावजूद, इसका हाइड्रोजन लिफाफा जरूरी नहीं कि बहुत मोटा हो और पानी की परत में जीवन का समर्थन करने के लिए सही स्थिति हो। उन्होंने डेटा की व्याख्या करने के लिए विस्तृत संख्यात्मक मॉडल और सांख्यिकीय विधियों का उपयोग करके वातावरण और आंतरिक दोनों की संरचना और संरचना का निर्धारण करने के लिए, साथ ही साथ द्रव्यमान और त्रिज्या के मौजूदा अवलोकनों का उपयोग किया।

शोधकर्ताओं ने इस बात की पुष्टि की कि जलवाष्प की एक महत्वपूर्ण मात्रा के साथ वातावरण हाइड्रोजन युक्त है। उन्होंने यह भी पाया कि मीथेन और अमोनिया जैसे अन्य रसायनों का स्तर ऐसे वातावरण के लिए अपेक्षा से कम था। क्या इन स्तरों को जैविक प्रक्रियाओं के लिए जिम्मेदार ठहराया जा सकता है, यह देखा जाना बाकी है।

टीम ने तब वायुमंडलीय गुणों का उपयोग ग्रहों के इंटीरियर के मॉडल के लिए सीमा स्थितियों के रूप में किया। उन्होंने मॉडल की एक विस्तृत श्रृंखला की खोज की जो वायुमंडलीय गुणों के साथ-साथ ग्रह के द्रव्यमान और त्रिज्या की व्याख्या कर सके। इसने उन्हें हाइड्रोजन लिफाफे की सीमा और पानी की परत में तापमान और दबाव सहित इंटीरियर में संभावित स्थितियों की सीमा प्राप्त करने की अनुमति दी।

इंस्टीट्यूट ऑफ एस्ट्रोनॉमी के पीएचडी छात्र सह-लेखक मैथ्यू निक्सन ने कहा, "हम हाइड्रोजन लिफाफे की मोटाई जानना चाहते थे - हाइड्रोजन कितनी गहराई तक जाती है।" "हालांकि यह कई समाधानों वाला एक प्रश्न है, हमने दिखाया है कि सभी अवलोकनों को एक साथ समझाने के लिए आपको अधिक हाइड्रोजन की आवश्यकता नहीं है।"

शोधकर्ताओं ने पाया कि डेटा द्वारा अनुमत हाइड्रोजन लिफाफे की अधिकतम सीमा ग्रह के द्रव्यमान का लगभग 6% है, हालांकि अधिकांश समाधानों में बहुत कम की आवश्यकता होती है। हाइड्रोजन की न्यूनतम मात्रा द्रव्यमान से लगभग दस लाखवां है, जो पृथ्वी के वायुमंडल के द्रव्यमान अंश के समान है। विशेष रूप से, कई परिदृश्य समुद्र की दुनिया के लिए अनुमति देते हैं, जिसमें दबाव और तापमान पर वातावरण के नीचे तरल पानी होता है जो पृथ्वी के महासागरों में पाए जाते हैं।

यह अध्ययन सौर मंडल के बाहर रहने योग्य स्थितियों और जैव-हस्ताक्षरों की खोज को एक्सोप्लैनेट के लिए खोलता है जो पृथ्वी से काफी बड़े हैं, पृथ्वी जैसे एक्सोप्लैनेट से परे हैं। इसके अतिरिक्त, K2-18b जैसे ग्रह वर्तमान और भविष्य के अवलोकन सुविधाओं के साथ वायुमंडलीय टिप्पणियों के लिए अधिक सुलभ हैं। इस अध्ययन में प्राप्त वायुमंडलीय बाधाओं को आगामी जेम्स वेब स्पेस टेलीस्कोप जैसी बड़ी सुविधाओं के साथ भविष्य के अवलोकनों का उपयोग करके परिष्कृत किया जा सकता है।


चट्टानी बनाम गैसीय ग्रह

हमारे सौर मंडल में, हमारे पास दो प्रकार के ग्रह हैं: छोटे, चट्टानी, घने ग्रह जो पृथ्वी के समान हैं और बड़े, गैसीय ग्रह जैसे बृहस्पति। अब तक हमने जो खगोल भौतिकीविदों ने पता लगाया है, उनमें से अधिकांश ग्रह इन दो श्रेणियों में आते हैं।

वास्तव में, जब हम ग्रह-शिकार मिशन जैसे केप्लर मिशन या ट्रांजिटिंग एक्सोप्लैनेट सिस्टम सैटेलाइट से डेटा देखते हैं, तो ग्रह के आकार में अंतर होता है। अर्थात्, ऐसे कई ग्रह नहीं हैं जो "सुपर-अर्थ" की परिभाषा को पूरा करते हैं, जिसकी त्रिज्या पृथ्वी की त्रिज्या से डेढ़ से दोगुनी है और एक द्रव्यमान जो पांच से 10 गुना अधिक है।

तो सवाल यह है कि कोई सुपर-अर्थ क्यों नहीं है? खगोलविद केवल छोटे चट्टानी ग्रह और विशाल गैसीय ग्रह ही क्यों देखते हैं?

दो प्रकार के ग्रहों के बीच अंतर, और इस सुपर-अर्थ गैप का कारण, ग्रह के वातावरण के साथ सब कुछ करना है - खासकर जब ग्रह बन रहा हो।

जब एक तारे का जन्म होता है, तो गैस का एक विशाल गोला एक साथ आता है, घूमने लगता है, अपने आप ढह जाता है और तारे के मूल में एक संलयन प्रतिक्रिया को प्रज्वलित करता है। यह प्रक्रिया सही नहीं है क्योंकि तारे के बनने के बाद बहुत सारी अतिरिक्त गैस और धूल बची रहती है। अतिरिक्त सामग्री तारे के चारों ओर तब तक घूमती रहती है जब तक कि यह अंततः एक तारकीय डिस्क में नहीं बन जाती: गैस, धूल और चट्टानों का एक सपाट, अंगूठी के आकार का संग्रह।

इस गति और हलचल के दौरान, धूल के दाने एक-दूसरे से टकराते हैं, कंकड़ बनते हैं जो तब बड़े और बड़े शिलाखंडों में विकसित होते हैं जब तक कि वे ग्रह नहीं बन जाते। जैसे-जैसे ग्रह आकार में बढ़ता है, इसका द्रव्यमान और इसलिए गुरुत्वाकर्षण बढ़ता है, जिससे यह न केवल संचित धूल और चट्टानों को पकड़ने की अनुमति देता है - बल्कि गैस भी, जो एक वातावरण बनाती है।

तारकीय डिस्क के भीतर बहुत सारी गैस है - आखिरकार, हाइड्रोजन और हीलियम सितारों और ब्रह्मांड में सबसे आम तत्व हैं। हालांकि, काफी कम चट्टानी सामग्री है क्योंकि स्टार गठन के दौरान केवल सीमित मात्रा में बनाया गया था।

पृथ्वी के आकार की तुलना में पुष्टि किए गए सुपर-अर्थ ग्रहों की तुलना। नासा/एम्स/जेपीएल-कैल्टेक


पैमाने के लिए सौर मंडल: सूर्य और ग्रह

सौर मंडल में ग्रह कितने बड़े हैं, इसे पूरी तरह से समझना अक्सर मुश्किल होता है। 1.3 मिलियन पृथ्वी सूर्य में समा सकती है, लेकिन इसकी कल्पना करना कठिन है। इस समस्या से निपटने में मदद करने का एक अच्छा तरीका ग्रहों को स्केल करना है। इस डेटासेट में पृष्ठभूमि के रूप में सूर्य है और फिर पैमाने पर खींचे गए सौर मंडल की एक तस्वीर है। सूर्य को भी बाकी ग्रहों के साथ स्केल करना है। अब तक, बृहस्पति दूसरा सबसे बड़ा शनि के साथ सबसे बड़ा ग्रह है, लेकिन वे निश्चित रूप से सूर्य के जितना बड़ा होने के करीब नहीं हैं, जिसकी त्रिज्या 432,000 मील (695,000 किमी) है। अब जब प्लूटो को ग्रह के रूप में वर्गीकृत नहीं किया गया है, तो बुध, सूर्य के सबसे निकट का ग्रह, 1516 मील (2440 किमी) के दायरे वाला सबसे छोटा ग्रह है। सौरमंडल का दूसरा ग्रह शुक्र, 3761 मील (6052 किमी) के दायरे वाला तीसरा सबसे छोटा ग्रह है। पृथ्वी, निश्चित रूप से, सूर्य का तीसरा निकटतम ग्रह है और 3963 मील (6378 किमी) की त्रिज्या के साथ चौथा सबसे छोटा ग्रह है। पृथ्वी के ठीक पीछे मंगल है, जो सौरमंडल का चौथा ग्रह है। मंगल ग्रह दूसरा सबसे छोटा ग्रह है जिसकी त्रिज्या २१११ मील (३३९७ किमी) है। पहले चार ग्रहों को स्थलीय ग्रह कहा जाता है क्योंकि वे मुख्य रूप से चट्टान से बने होते हैं और इनका वातावरण पतला होता है।

बाहरी ग्रहों को गैस दिग्गज कहा जाता है क्योंकि वे बड़े होते हैं और मुख्य रूप से हाइड्रोजन और हीलियम से बने होते हैं। गैस दिग्गजों में भी आमतौर पर बड़ी संख्या में चंद्रमा होते हैं, जबकि स्थलीय ग्रहों में सीमित चंद्रमा होते हैं। पहला गैस विशाल, बृहस्पति निश्चित रूप से एक विशालकाय है। बृहस्पति की त्रिज्या 44,423 मील (71492 किमी) है। बृहस्पति के अंदर 1300 से अधिक पृथ्वी फिट हो सकती हैं। बृहस्पति के बाद अगला ग्रह शनि है, जो दूसरा सबसे बड़ा ग्रह है। शनि की त्रिज्या 37,449 मील (60268 किमी) है। शनि के छल्ले एक क्रेडिट कार्ड की चौड़ाई के होंगे और चित्र में दिखाए गए से बहुत आगे बढ़ेंगे। सबसे चमकीले वलयों का किनारा शनि से 75,900 मील (122,200 किमी) दूर है और सबसे कमजोर वलय शनि से 300,000 मील (483,000 किमी) दूर है। सूर्य से सातवां ग्रह यूरेनस है। यूरेनस 15882 मील (25,559 किमी) की त्रिज्या के साथ तीसरा सबसे बड़ा ग्रह है। अब सौर मंडल में आठवां और अंतिम ग्रह माना जाता है, नेप्च्यून, चौथा सबसे बड़ा ग्रह है जिसकी त्रिज्या 15,389 मील (24,766 किमी) है। यूरेनस और नेपच्यून आकार में बहुत करीब हैं। चित्र में अंतिम वस्तु प्लूटो है, जिसे अब एक बौने ग्रह के रूप में वर्गीकृत किया गया है। प्लूटो का केवल 715 मील (1150 किमी) का दायरा है। इसे 2006 में ग्रह से बौने ग्रह में अवनत कर दिया गया था जब ग्रहों को वर्गीकृत करने के लिए नए दिशानिर्देश बनाए गए थे और प्लूटो सभी योग्यताओं को पूरा नहीं करता था।


खगोलविद सूर्य जैसे तारे से बड़ी दूरी पर विशालकाय ग्रह से हैरान हैं

एक्सोप्लैनेट YSES 2b (नीचे दाएं) और उसके तारे (केंद्र) की एक सीधी छवि। तारा एक तथाकथित कोरोनोग्राफ द्वारा अवरुद्ध है। श्रेय: ESO/SPHERE/VLT/Bohn et al.

डच वैज्ञानिकों के नेतृत्व में खगोलविदों की एक टीम ने सूर्य जैसे तारे के चारों ओर एक बड़ी दूरी पर परिक्रमा कर रहे एक विशाल ग्रह की प्रत्यक्ष रूप से छवि बनाई है। यह ग्रह इतना विशाल क्यों है और यह कैसे बना यह एक रहस्य है। शोधकर्ता अपने निष्कर्षों को जर्नल में प्रकाशित करेंगे खगोल विज्ञान और खगोल भौतिकी.

विचाराधीन ग्रह YSES 2b है, जो पृथ्वी से 360 प्रकाश-वर्ष की दूरी पर Musca के दक्षिणी नक्षत्र (लैटिन फॉर द फ्लाई) की दिशा में स्थित है। गैसीय ग्रह हमारे सौर मंडल के सबसे बड़े ग्रह बृहस्पति से छह गुना भारी है। नया खोजा गया ग्रह पृथ्वी की तुलना में अपने तारे से 110 गुना अधिक दूरी पर परिक्रमा करता है (या सूर्य और बृहस्पति के बीच की दूरी का 20 गुना)। साथ वाला तारा केवल 14 मिलियन वर्ष पुराना है और बचपन में हमारे सूर्य जैसा दिखता है।

ग्रह से तारे की बड़ी दूरी खगोलविदों के लिए एक पहेली प्रस्तुत करती है क्योंकि यह बड़े गैसीय ग्रहों के निर्माण के लिए दो सबसे प्रसिद्ध मॉडलों में से किसी एक के लिए उपयुक्त नहीं लगता है। यदि ग्रह कोर अभिवृद्धि के माध्यम से अपने वर्तमान स्थान पर तारे से दूर हो गया होता, तो यह बहुत भारी होता क्योंकि तारे से इतनी बड़ी दूरी पर एक विशाल ग्रह बनाने के लिए पर्याप्त सामग्री नहीं होती है। यदि ग्रह ग्रहीय डिस्क में तथाकथित गुरुत्वाकर्षण अस्थिरता द्वारा बनाया गया था, तो ऐसा प्रतीत होता है कि यह पर्याप्त भारी नहीं है। तीसरी संभावना यह है कि ग्रह कोर अभिवृद्धि द्वारा तारे के करीब बना और फिर बाहर की ओर चला गया। हालांकि, इस तरह के प्रवास के लिए दूसरे ग्रह के गुरुत्वाकर्षण प्रभाव की आवश्यकता होगी, जिसे शोधकर्ताओं ने अभी तक नहीं पाया है।

खगोलविद निकट भविष्य में इस असामान्य ग्रह और इसके तारे के परिवेश की जांच करना जारी रखेंगे और इस प्रणाली के बारे में अधिक जानने की उम्मीद करेंगे, और वे युवा, सूर्य जैसे सितारों के आसपास अन्य गैसीय ग्रहों की खोज जारी रखेंगे। वर्तमान दूरबीनें अभी इतनी बड़ी नहीं हैं कि वे सूर्य जैसे तारों के चारों ओर पृथ्वी जैसे ग्रहों की प्रत्यक्ष इमेजिंग कर सकें।

प्रमुख शोधकर्ता अलेक्जेंडर बोहन (लीडेन विश्वविद्यालय): “निकट भविष्य में बृहस्पति जैसे और अधिक एक्सोप्लैनेट की जांच करके, हम सूर्य जैसे सितारों के आसपास गैस दिग्गजों की गठन प्रक्रियाओं के बारे में अधिक जानेंगे।”

YSES 2b ग्रह की खोज यंग सन्स एक्सोप्लैनेट सर्वे (YSES) द्वारा की गई थी। इस सर्वेक्षण ने पहले ही 2020 में सूर्य जैसे तारे के चारों ओर एक बहु-ग्रह प्रणाली की पहली प्रत्यक्ष छवि प्रदान की थी। शोधकर्ताओं ने चिली में यूरोपीय दक्षिणी वेधशाला (ईएसओ) के वेरी लार्ज टेलीस्कोप का उपयोग करके 2018 और 2020 में अपने अवलोकन किए। इसके लिए उन्होंने टेलिस्कोप के SPHERE इंस्ट्रूमेंट का इस्तेमाल किया। यह उपकरण नीदरलैंड द्वारा सह-विकसित किया गया था और एक्सोप्लैनेट से प्रत्यक्ष और अप्रत्यक्ष प्रकाश को पकड़ सकता है।

संदर्भ: “युवा सौर एनालॉग YSES 2” के लिए एक सीधे प्रतिबिम्बित ग्रह की खोज अलेक्जेंडर जे। बोहन, क्रिश्चियन गिन्स्की, मैथ्यू ए। केनवर्थी, एरिक ई। मामाजेक, मार्क जे। पेकॉट, मार्कस मुगराउर, निकोलस वोग्ट, क्रिश्चियन द्वारा एडम, टिफ़नी मेशकट, मदाल्डेना रेगियानी और फ्रैंस स्निक, 19 अप्रैल 2021, खगोल विज्ञान और खगोल भौतिकी.
डीओआई: 10.1051/0004-6361/202140508


या यह जितना बड़ा ग्रह है, गुरुत्वाकर्षण उतना ही कम है?

अगर रचना वही रहती है -- और यह एक बहुत बड़ा "यदि" है, -- तो ग्रह जितना बड़ा होगा, गुरुत्वाकर्षण उतना ही मजबूत होगा। विशेष रूप से, एक कारक F द्वारा त्रिज्या बढ़ाने से द्रव्यमान F^3 बढ़ जाता है, और केंद्र से F^2 द्वारा बड़ी दूरी के कारण गुरुत्वाकर्षण कम हो जाता है। एर्गो, निरंतर संरचना को देखते हुए, गुरुत्वाकर्षण त्रिज्या के समानुपाती होता है।

उपरोक्त क्षुद्रग्रह-से-चंद्रमा आकार के पिंडों के लिए सही है, इससे ऊपर चीजें अधिक जटिल हो जाती हैं क्योंकि ग्रह के केंद्र में दबाव किसी भी सामग्री के घनत्व को बढ़ाने के लिए पर्याप्त हो जाता है, और ग्रह जितना बड़ा होता है, उतना ही अधिक संपीड़न होता है। जिसका अर्थ है कि एक कारक F द्वारा त्रिज्या बढ़ाने से द्रव्यमान बढ़ जाता है अधिक F^3 की तुलना में, और गुरुत्वाकर्षण त्रिज्या की तुलना में तेजी से बढ़ता है। कितनी तेजी से, मुझे नहीं पता।

हालांकि, चूंकि बहुत बड़े ग्रहों में भी प्रकाश तत्वों का अनुपात बढ़ रहा है, इसलिए उनकी सतह का गुरुत्वाकर्षण कम हो जाता है - यूरेनस, नेपच्यून और शनि सभी का सतह गुरुत्वाकर्षण पृथ्वी से कम है। शनि के द्रव्यमान से परे अधिक द्रव्यमान जोड़ने से अधिकतर त्रिज्या में अधिक वृद्धि किए बिना घनत्व बढ़ जाता है, इसलिए गुरुत्वाकर्षण तेजी से बढ़ता है। लगभग दोगुने से अधिक बृहस्पति द्रव्यमान अधिक सामग्री जोड़ने से ग्रह को इतना संकुचित कर देता है कि उसकी त्रिज्या वास्तव में कम हो जाती है, और सतह का गुरुत्वाकर्षण बहुत तेज़ी से बढ़ता है।


कोई ग्रह कितना बड़ा (अर्थात त्रिज्या) हो सकता है? - खगोल विज्ञान

मैं हमेशा इस धारणा में रहता था कि किसी वस्तु के ग्रह होने के लिए उसके चारों ओर एक उपग्रह होना चाहिए, एक चंद्रमा, इसलिए प्लूटो को इतना छोटा होने पर भी एक ग्रह कहा जा सकता है। मेरा प्रश्न तब है, बुध और शुक्र ग्रह क्यों हैं और ग्रह स्थिति के लिए आवश्यक पैरामीटर क्या हैं।

इस प्रश्न के मूल प्रस्तुतीकरण (1999 में) के बाद से, प्लूटो को केवल एक ग्रह के बजाय एक बौने ग्रह में अवनत कर दिया गया है।

सभी ग्रहों में चंद्रमा नहीं होते हैं (आपने बताया है कि शुक्र और बुध नहीं हैं), और यह कोई आवश्यकता नहीं है।

2006 में, इंटरनेशनल एस्ट्रोनॉमिकल यूनियन (IAU), जिसका खगोलीय नामकरण के मामलों पर अंतिम कहना है, ने एक औपचारिक परिभाषा पर मतदान किया कि एक ग्रह क्या बनाता है। (आधिकारिक प्रेस विज्ञप्ति यहाँ है।) उनके निर्णय के अनुसार ग्रह को निम्नलिखित तीन मानदंडों को पूरा करना चाहिए:

  • यह एक ऐसी वस्तु होनी चाहिए जो स्वतंत्र रूप से सूर्य की परिक्रमा करती हो (इसका अर्थ है कि चंद्रमाओं को ग्रह नहीं माना जा सकता, क्योंकि वे ग्रहों की परिक्रमा करते हैं)
  • इसका द्रव्यमान इतना होना चाहिए कि इसका अपना गुरुत्वाकर्षण इसे मोटे तौर पर गोलाकार आकार में खींच ले
  • यह अपनी कक्षा को "हावी" करने के लिए काफी बड़ा होना चाहिए (अर्थात इसका द्रव्यमान किसी अन्य चीज से बहुत बड़ा होना चाहिए जो इसकी कक्षा को पार करता है)

क्योंकि प्लूटो इतना बड़ा नहीं है कि अपनी कक्षा में "हावी" कर सके, यह एक ग्रह नहीं है। (नेपच्यून प्लूटो से लगभग 8000 गुना अधिक विशाल है, इसलिए नेपच्यून एक ग्रह है और प्लूटो एक बौना ग्रह है।)

यह पृष्ठ अंतिम बार 24 जुलाई 2015 को अपडेट किया गया था।

लेखक के बारे में

डेव कोर्नरेइच

डेव आस्क ए एस्ट्रोनॉमर के संस्थापक थे। उन्होंने 2001 में कॉर्नेल से पीएचडी की उपाधि प्राप्त की और अब कैलिफोर्निया में हम्बोल्ट स्टेट यूनिवर्सिटी में भौतिकी और भौतिक विज्ञान विभाग में सहायक प्रोफेसर हैं। वहां वह आस्क द एस्ट्रोनॉमर का अपना संस्करण चलाता है। वह विषम ब्रह्माण्ड विज्ञान के प्रश्न में भी हमारी मदद करता है।


सुपर-अर्थ एक्सोप्लैनेट K2-18b में जीवन के लिए सही स्थितियां हो सकती हैं

ब्रिटेन के कैम्ब्रिज विश्वविद्यालय में खगोल विज्ञान संस्थान के खगोलविदों की एक टीम ने K2-18b पाया है, जो कि लाल बौने K2-18 के चारों ओर कक्षा में लगभग नौ पृथ्वी द्रव्यमान वाला ग्रह है, जो संभावित रूप से रहने योग्य है।

इस कलाकार की छाप ग्रहों K2-18b और c और उनके मेजबान तारे को दर्शाती है। छवि क्रेडिट: नासा / ईएसए / हबल / एम कोर्नमेसर।

K2-18 एक M-प्रकार का तारा है जो सिंह राशि के नक्षत्र में लगभग 111 प्रकाश वर्ष दूर स्थित है।

EPIC 201912552 के रूप में भी जाना जाता है, यह तारा दो बड़े ग्रहों की मेजबानी करता है: K2-18b और c।

2015 में खोजा गया, K2-18b का त्रिज्या पृथ्वी के 2.6 गुना है और यह लगभग 8.6 गुना विशाल है।

ग्रह लगभग ०.१५ एयू की दूरी पर हर ३३ दिनों में मूल तारे की परिक्रमा करता है और इसका पृथ्वी समानता सूचकांक ०.७३ है।

2019 में, दो अलग-अलग टीमों ने K2-18b के हाइड्रोजन-समृद्ध वातावरण में जल वाष्प का पता लगाने की सूचना दी। हालांकि, वातावरण की सीमा और नीचे की आंतरिक स्थितियों की स्थिति अज्ञात रही।

"कई एक्सोप्लैनेट के वायुमंडल में जल वाष्प का पता लगाया गया है, लेकिन, भले ही ग्रह रहने योग्य क्षेत्र में हो, इसका मतलब यह नहीं है कि सतह पर रहने योग्य स्थितियां हैं," डॉ निक्कू मधुसूदन, प्रमुख लेखक ने कहा। द स्टडी।

"आवास के लिए संभावनाओं को स्थापित करने के लिए, ग्रह पर आंतरिक और वायुमंडलीय स्थितियों की एकीकृत समझ प्राप्त करना महत्वपूर्ण है - विशेष रूप से, क्या तरल पानी वायुमंडल के नीचे मौजूद हो सकता है।"

K2-18b के बड़े आकार को देखते हुए, यह सुझाव दिया गया है कि यह पृथ्वी के बड़े संस्करण की तुलना में नेपच्यून के छोटे संस्करण की तरह अधिक होगा।

एक 'मिनी-नेपच्यून' में उच्च दबाव वाले पानी की एक परत के चारों ओर एक बड़ा हाइड्रोजन 'लिफाफा' होने की उम्मीद है, जिसमें चट्टान और लोहे का आंतरिक भाग होता है।

यदि हाइड्रोजन लिफाफा बहुत मोटा है, तो नीचे की पानी की परत की सतह पर तापमान और दबाव जीवन का समर्थन करने के लिए बहुत अधिक होगा।

अब, डॉ. मधुसूदन और उनके सहयोगियों ने दिखाया है कि K2-18b के आकार के बावजूद, इसका हाइड्रोजन लिफाफा जरूरी नहीं कि बहुत मोटा हो और पानी की परत में जीवन का समर्थन करने के लिए सही स्थिति हो।

खगोलविदों ने डेटा की व्याख्या करने के लिए विस्तृत संख्यात्मक मॉडल और सांख्यिकीय विधियों का उपयोग करके वायुमंडल और आंतरिक दोनों की संरचना और संरचना का निर्धारण करने के लिए, साथ ही साथ द्रव्यमान और त्रिज्या के मौजूदा अवलोकनों का उपयोग किया।

उन्होंने जल वाष्प की एक महत्वपूर्ण मात्रा के साथ वातावरण को हाइड्रोजन युक्त होने की पुष्टि की।

उन्होंने यह भी पाया कि मीथेन और अमोनिया जैसे अन्य रसायनों का स्तर ऐसे वातावरण के लिए अपेक्षा से कम था।

क्या इन स्तरों को जैविक प्रक्रियाओं के लिए जिम्मेदार ठहराया जा सकता है, यह देखा जाना बाकी है।

शोधकर्ताओं ने तब वायुमंडलीय गुणों का उपयोग ग्रहों के इंटीरियर के मॉडल के लिए सीमा की स्थिति के रूप में किया था।

उन्होंने मॉडल की एक विस्तृत श्रृंखला की खोज की जो वायुमंडलीय गुणों के साथ-साथ ग्रह के द्रव्यमान और त्रिज्या की व्याख्या कर सके।

इसने उन्हें हाइड्रोजन लिफाफे की सीमा और पानी की परत में तापमान और दबाव सहित इंटीरियर में संभावित स्थितियों की सीमा प्राप्त करने की अनुमति दी।

अध्ययन के सह-लेखक मैथ्यू निक्सन ने कहा, "हम हाइड्रोजन लिफाफे की मोटाई जानना चाहते थे - हाइड्रोजन कितना गहरा जाता है।"

"हालांकि यह कई समाधानों वाला एक प्रश्न है, हमने दिखाया है कि सभी अवलोकनों को एक साथ समझाने के लिए आपको अधिक हाइड्रोजन की आवश्यकता नहीं है।"

वैज्ञानिकों ने पाया कि डेटा द्वारा अनुमत हाइड्रोजन लिफाफे की अधिकतम सीमा ग्रह के द्रव्यमान का लगभग 6% है, हालांकि अधिकांश समाधानों में बहुत कम की आवश्यकता होती है।

हाइड्रोजन की न्यूनतम मात्रा पृथ्वी के वायुमंडल के द्रव्यमान अंश के समान द्रव्यमान के लगभग दस लाखवाँ भाग है।

विशेष रूप से, कई परिदृश्य समुद्र की दुनिया के लिए अनुमति देते हैं, जिसमें दबाव और तापमान पर वातावरण के नीचे तरल पानी होता है जो पृथ्वी के महासागरों में पाए जाते हैं।

निक्कू मधुसूदनो और अन्य. 2020 रहने योग्य क्षेत्र के एक्सोप्लैनेट K2-18b का आंतरिक और वातावरण। एपीजेएल, प्रेस doi में: 10.3847/2041-8213/ab7229


एप. 79: ब्रह्मांड कितना बड़ा है?

हम ब्रह्मांड के बारे में अपनी खोज की त्रयी को पूरा करने के लिए तैयार हैं। हमने सीखा है कि इसका कोई केंद्र नहीं है बल्कि हर जगह इसका केंद्र है और कहीं नहीं। हमने पाया कि ब्रह्मांड सपाट प्रतीत होता है। यह खुला नहीं है, यह बंद नहीं हुआ है, यह फ्लैट है। अगर इसका कोई मतलब नहीं है, तो आपको पिछले शो को सुनने की जरूरत है क्योंकि मेरे पास इसका स्पष्टीकरण देने का कोई तरीका नहीं है।
तो अब हम जानना चाहते हैं: यह कितना बड़ा है? क्या यह हमेशा के लिए चलता है या यह पैमाने में सीमित है? हम इसमें से कितना देख सकते हैं?

नोद्स दिखाएं

दृश्यमान ब्रह्मांड — ब्रह्मांड के एटलस से नक्शा

प्रतिलेख: ब्रह्मांड कितना बड़ा है?

प्रतिलेख डाउनलोड करें
फ्रेजर कैन: हम ब्रह्मांड के बारे में अपनी खोज की त्रयी को पूरा करने के लिए तैयार हैं। हमने सीखा है कि इसका कोई केंद्र नहीं है बल्कि हर जगह इसका केंद्र है और कहीं नहीं।
हमने पाया कि ब्रह्मांड सपाट प्रतीत होता है। यह खुला नहीं है, यह बंद नहीं है, यह सपाट है। अगर इसका कोई मतलब नहीं है, तो आपको पिछले शो को सुनने की जरूरत है क्योंकि मेरे पास इसका स्पष्टीकरण देने का कोई तरीका नहीं है।
तो अब हम जानना चाहते हैं: “यह कितना बड़ा है? क्या यह हमेशा के लिए चलता है या यह पैमाने में सीमित है? हम इसमें से कितना देख सकते हैं? ठीक है, मुझे पता है कि हमारे रोल करने से पहले आप कुछ शर्तों को परिभाषित करना चाहते थे, इसलिए हम इसे क्यों नहीं तोड़ते।
डॉ पामेला गे: सबसे पहले हमें यह पता लगाना होगा कि दृश्य ब्रह्मांड क्या है। ब्रह्मांड का जो हिस्सा हम देख सकते हैं वह शायद कुल ब्रह्मांड का एक बहुत छोटा अंश है। लेकिन यह वैसा नहीं है जैसा हम सोचते हैं।
फ्रेजर: अच्छा, मुझे क्या लगता है कि यह क्या है?
पामेला: तो, ज्यादातर लोग पूछते हैं, “आपको क्या लगता है कि हम कितनी दूर देख सकते हैं?” वे जवाब देते हैं, अगर वे शो को काफी समय से सुन रहे हैं, तो ब्रह्मांड 13.7 अरब साल पुराना है और इसका मतलब है कि हम कर सकते हैं शायद वे चीजें देखें जो 13.7 अरब प्रकाश वर्ष दूर हैं।
फ्रेजर: सभी दिशाओं में?
पामेला: सभी दिशाओं में। और यह अपनी तरह का वैध तर्क है, लेकिन समस्या यह है कि ब्रह्मांड का विस्तार हो रहा है। हम प्रकाश के साथ वस्तुओं को देख सकते हैं जो 13.7 अरब प्रकाश वर्ष लंबे पथ की यात्रा कर चुके हैं, लेकिन समस्या उस फोटॉन का प्रारंभिक बिंदु है जिसने 13.7 अरब वर्ष की यात्रा की है, जो 13.7 अरब प्रकाश वर्ष दूर है।
फ्रेजर: आप सही कह रहे हैं। अगर आपने मुझसे पूछा होता तो मेरा जवाब यही होता। लेकिन अब जब मैं इसके बारे में सोचता हूं, तो यह पूरी तरह से लाल हो गया है और यह सब फैल गया है। तो, यह वास्तव में इससे आगे की यात्रा कर रहा है। ठीक है, किसी ने गणित किया होगा।
पामेला: किसी ने गणित किया है। वास्तव में, यह 78 अरब प्रकाश वर्ष दूर है, जहां से उस सबसे दूर के फोटॉन के लिए वह प्रारंभिक बिंदु है जिसे हम देख पा रहे हैं।
फ्रेजर: सत्तर अरब प्रकाश वर्ष?
पामेला: अट्ठाईस अरब प्रकाश वर्ष दूर उस फोटॉन का प्रारंभिक बिंदु है।
फ्रेजर: तो हम अपने चारों ओर ७८ अरब प्रकाश वर्ष के दायरे में एक गोला देख सकते हैं, इसलिए १५६ अरब प्रकाश वर्ष – एक बुलबुला, मुझे लगता है कि पार।
पामेला: और यह सब इसलिए है क्योंकि ब्रह्मांड का विस्तार हो रहा है। प्रकाश एक दूरी की यात्रा करता है लेकिन वस्तुएं हमसे दूर जा रही हैं इसलिए हम वास्तव में जो देख सकते हैं वह उस गोले की तुलना में एक बड़े क्षेत्र का प्रतिनिधित्व करता है जिस पर प्रकाश चलता है। यह वाकई अजीब है।
फ्रेजर: लेकिन, एक मिनट रुकिए। मेरे पास उन क्षणों में से एक है जहां प्रश्न तेजी से बुदबुदा रहे हैं, जितना कि मैं उन्हें समझा सकता हूं। तो मुझे बस इसका दोहन करने दें।
मैं बस कल्पना कर सकता हूं कि हम कहते हैं कि हमारे पास सबसे दूर की चीज है जो बिग बैंग में हुई थी और यह हमसे दूर जा रही है और यह प्रकाश उत्सर्जित कर रही है। हम उस प्रकाश को देख रहे हैं जो बिग बैंग के समय हमारे पास आया था, लेकिन हम अभी भी उससे आने वाले प्रकाश को कैसे देख रहे हैं क्योंकि यह 80 बिलियन प्रकाश वर्ष दूर जा रहा है? मदद।
पामेला: यहाँ मैं इसके बारे में कैसे सोचता हूँ: कल्पना कीजिए कि आप एक चलते-फिरते रास्ते के बिल्कुल अंत में खड़े हैं जो आपसे दूर जा रहा है। आप चलते-फिरते वॉकवे को बंद करके शुरू करते हैं। आपके ठीक सामने कोई है जिसके पास कंचों से भरा बैग है। वे वॉकवे की तुलना में थोड़ी तेज़ी से मार्बल्स को रोल करने में सक्षम हैं।
तो आप वॉकवे चालू करते हैं और आप उनसे कहते हैं कि कंचे चलाना शुरू कर दें। वे जो कंचे आप पर फेंक रहे हैं, उन्हें आपके और उस व्यक्ति के बीच की वास्तविक दूरी से अधिक दूरी तय करनी पड़ रही है, लेकिन आपके और उस व्यक्ति के बीच की दूरी से कम जब मार्बल आपको मिल जाए।
तो वो इंसान आपसे दूर जाता रहता है और वो मार्बल जो वॉकवे की तुलना में थोड़ा तेज चलता है वो आपको मिल ही जाता है लेकिन उसे समय के साथ इस बढ़ती हुई दूरी को तय करना होता है।
अब यदि वह व्यक्ति मार्बल्स को घुमाता रहता है, तो आपको उस व्यक्ति से कंचों की एक स्थिर धारा प्राप्त होगी, जैसे हमें कॉस्मिक माइक्रोवेव बैकग्राउंड से फोटॉन की एक स्थिर धारा प्राप्त होती है। लेकिन उनमें से प्रत्येक कंचे को ब्रह्मांड के विस्तार के रूप में थोड़ी अधिक और थोड़ी अधिक लंबी यात्रा करनी पड़ती है।
फ्रेजर: और यह सब ठीक और अच्छा होगा, सिवाय इसके कि अब हमारे पास डार्क एनर्जी के कारण ब्रह्मांड के तेजी से विस्तार की समस्या है। तो एक समय ऐसा भी आ सकता है जब कंचे लुढ़कने वाला वह बेचारा कंचे लुढ़कने वाला हो और वे आप तक कभी नहीं पहुंचेंगे।
पामेला: बिल्कुल सही। हमारी समस्याओं में से एक यह है कि इस तथ्य की अनदेखी करते हुए कि ब्रह्मांड का विस्तार गतिमान वॉकवे को तेज कर रहा है, टूट जाता है क्योंकि ब्रह्मांड लोगों को एक स्थिर गति से आगे बढ़ने का कारण नहीं बना रहा है या आकाशगंगाओं का कारण बन सकता है जैसा कि मामला हो सकता है हमसे निरंतर वेग से दूर चले जाते हैं।
बल्कि, जो वस्तुएँ आगे और आगे दूर होती हैं, वे तेज़ी से और तेज़ी से दूर जा रही हैं। इसलिए जो वस्तुएं अधिक दूरी से आ रही हैं, उन्हें वास्तव में हमारे सरल चलने वाले रास्ते से आपकी अपेक्षा से भी अधिक यात्रा करनी पड़ती है।
आप जो कल्पना कर सकते हैं वह यह है कि इसके बजाय आपके पास यह विस्तारित मंजिल है जहां आप प्रत्येक टाइल के एक अलग किनारे पर खड़े हैं और टाइलें बड़ी और बड़ी होती जा रही हैं। आपके और कंचों को घुमाने वाले व्यक्ति के बीच जितनी अधिक टाइलें होंगी, उतनी ही तेज़ी से उन्हें कंचों को रोल करना होगा। तो, यह वास्तव में गणितीय रूप से बहुत जल्दी जटिल हो जाता है।
फ्रेजर: या हो सकता है कि वे हर पांच मिनट में तेजी से चलने वाले पैदल मार्ग पर कदम रखते हों, है ना? इसलिए सबसे दूर के लोगों को सबसे ज्यादा परेशानी होती है। इसका क्या निहितार्थ है? मैं कल्पना कर सकता हूं कि जब ब्रह्मांड विज्ञानी अपनी गणना भी कर रहे हैं, जो कि हम पिछले एपिसोड में गए थे, ब्रह्मांड के आकार के बारे में बात कर रहे थे।
गणित बहुत भारी में आना चाहिए। मैंने इस बारे में लेख पढ़े हैं कि कैसे खगोलविदों ने आकाशगंगा की खोज की है और हम इसे देखते हैं, क्योंकि यह बिग बैंग के केवल एक अरब वर्ष बाद था। यह निहितार्थ वास्तव में उनकी गणना में आना चाहिए।
पामेला: वैसे चीजों में से एक जो सबसे जटिल हो जाती है वह यह बताने की कोशिश कर रही है कि दूरी से आपका क्या मतलब है। जब मैं कहता हूं कि एक आकाशगंगा कुछ दूरी पर है, तो मैं उस समय के बीच की दूरी के बारे में बात कर रहा था जहां वह थी और जहां पृथ्वी उस समय थी जब प्रकाश दिया गया था। यह वास्तव में बहुत छोटी दूरी है।
मैं उस दूरी के बारे में बात कर रहा था जो प्रकाश ने यात्रा की थी। वह बीच की दूरी है। मैं उस दूरी के बारे में बात कर सकता हूं जहां वह वस्तु थी जब उसने प्रकाश दिया था और जहां पृथ्वी अब है, जो थोड़ी बड़ी है।
मैं उस दूरी के बारे में बात कर सकता हूं जहां वस्तु अभी है और जहां पृथ्वी अब है जो सबसे बड़ी दूरी है।
फ्रेजर: मुझे यह शिकायत बहुत से लोगों से तब मिलती है जब वे लेख पढ़ रहे होते हैं और हम कुछ इस तरह की बात करते हैं जैसे अभी यह सितारा तारकीय सामग्री के कश दे रहा है। यह अपना बाहरी लिफाफा दे रहा है।
लेकिन तारा 12,000 प्रकाश वर्ष दूर है। लोग शिकायत करेंगे, अभी शब्द मत कहो क्योंकि यह 12,000 प्रकाश वर्ष दूर हुआ था। यह एक बड़े संस्करण की तरह है जब आप कहते हैं, अभी बात करने के चार अलग-अलग तरीके हैं।
किसी एक को मनमाने ढंग से चुनना उचित नहीं है और इसलिए यह लगभग वैसा ही है जैसा हम लिखते समय डिफ़ॉल्ट रूप से करते हैं, प्रकाश के लिए ठीक है जैसा कि हम आज देखते हैं।
पामेला: हाँ। यह ऐसा है जैसे यदि आप इस क्षण को आकाश में इस स्थान पर देखते हैं तो आप यही देखेंगे।
फ्रेजर: क्योंकि यह केवल वही है जिसे हम वास्तव में निश्चित रूप से जान सकते हैं। All the others we are projecting and right now we don’t know what’s going to happen in 12,000 years. On the converse we could say when we look at this object it’s not really what is was doing 12,000 years ago. That’s just what the light was doing 12,000 years ago.
So you almost need to get into a cosmology conversation with the person when they have that argument with you. We just default to this is what we’re seeing right now and that’s what it’s doing right now. Yes we know that it happened in the past but this is the only way that we can write about it.
पामेला: And it gets particularly confusing when we’re looking at objects that its light got to us from two different directions. Imagine that you’re looking at a quasar where you’re seeing the light that went on the straight-line path in our flat geometry of the universe and came straight toward the planet Earth.
फ्रेजर: We’re also looking at a bent image of this quasar where the light perhaps was headed off somewhere else and then was bent by a large galaxy, cluster of galaxies or some sort of a gravitational mass that lensed the object and bent its light to come to us from a different path.
That different path is going to be longer so it took more time for the light to get to us. So we see two different images, neither of which is now but we’re seeing them now. And we can see the galaxy do something in the straight line image and then look a little while later and see it do that exact same thing again in the bent line image.
That really mucks up when is now when you’re observing and what is the quasar doing now? ‘Now’ has way too many meanings.
फ्रेजर: Did I mention people should keep some more of that ibuprofin this week for this weeks’ headache. Let’s go back then. We said that the observable universe is about 156 billion light years across.
That begs the next question: “What percentage of the real universe are we actually able to see?â€
पामेला: We don’t know.
फ्रेजर: Okay, well then I guess that depends. When I see a percentage I guess that depends on whether a universe is finite or infinite. So why don’t we talk about that and then we can come back around.
पामेला: This is where all cosmologists just sort of hang their heads and say, “We’re working on it. We have limits. We have ideas and we may never know the exact answer.â€
फ्रेजर: So let’s define then an infinite universe first. That would mean that wherever you go, in whatever direction you look, whatever direction you travel, it’s galaxy after galaxy star after star dark matter after dark matter. It’s turtles all the way down.
पामेला: It’s turtles all the way down and you can never get from the top turtle to the bottom turtle.
फ्रेजर: सही। And one of the implications for that is I think we talked about multiple dimensions. When you have an infinite universe, not only is everything possible, but also everything has to exist.
If you travel in one direction far enough you will run into another Fraser and Pamela sitting on a planet that looks like the Earth recording a podcast talking about this situation.
In fact there will be an infinite number of Frasers & Pamelas having this conversation because if it’s an infinite universe, everything has to exist an infinite number of times.
पामेला: And it starts to get really screwball.
फ्रेजर: Like it starts like the things that I just said isn’t screwball enough.
पामेला: So here’s where you start to go augh! Because like you said, in a truly infinite universe you start getting into infinite numbers of the same thing happening over and over again no matter how small the probability you eventually find it.
Now if you have a small enough finite universe, the light wraps around and we can see us in the past.
फ्रेजर: सही। I believe we talked about that since the universe is flat parallel lines move in the same direction. You look one direction and once you hit the edge of the universe as it were, that’s just the back of your head.
There is no edge and so in all directions at the most distant thing, what you will see is where you started. But then I guess you would look past your own shoulder and see further, right?
पामेला: Well, what’s so cool about that idea, which doesn’t work out it turns out, is we could in principle if the universe were finite and small enough, look and see what the Earth looked like 10 billion years ago. That would be so cool to actually watch the evolution of the planet.
फ्रेजर: But if is was small enough wouldn’t we it a billion light years and the just past the Earth there’s another Earth and that one we’re seeing at 2 billion years ago?
पामेला: That’s if you’re really tiny. And we really would have noticed that by now. It’s not that tiny. But there was some hope, dashed horribly by the Wilkinson Microwave Anisotropy Probe that perhaps we lived in a universe that was either a four-dimensional toroid or some hyper-dodecahedron which is just fun to say.
If the universe was small enough we could look out at the cosmic microwave background and see in different places on the cosmic microwave background identical splotches of light. Identical places where we’re basically looking out the front door of the universe and seeing in through the back door.
फ्रेजर: And we don’t see that.
पामेला: We don’t see that.
फ्रेजर: So then wouldn’t that just say well fine then, that’s not true? When physicists say you’re looking out the front door and you’re seeing the back door shouldn’t that evidence from WMAP have said no?
पामेला: Well, so we looked out and astronomers stared at WMAP with great dedication and computer software trying to find identical splotches and they couldn’t do it. Now the thing is that doesn’t tell us that with certainty the universe is not a hyper-toroid It is not a hyper-dodecahedron, not a soccer ball, not a donut.
We can’t say that because it could be that it’s just such a big donut or soccer ball that the two identical splotches, the front door and the back door that see in through one another lie further apart than the size of our visible universe.
फ्रेजर: So they moved away too far?
पामेला: हाँ। And we just can’t see the two identical splotches on the sky.
फ्रेजर: So, seeing identical splotches would give you the confirmation, so it’s still unknown. Let’s go back to the infinite universe for a second. How would the Big Bang fit into that concept?
पामेला: The idea is that with certain geometries, for instance the saddle shaped geometry, you can’t create a geometry that is saddle shaped and closed in. The edges are just reaching out and it has to be infinite to get to that geometry.
With flat you can start to get the things like toroids, which are finite. But in general flat in most of the ways we work the math with you end up with an infinite universe. It’s just the geometry of space that you can always take that next step and fall out of the universe but you’re still in it because it’s infinite. You can just keep going and the universe has no edges in its particular geometry.
फ्रेजर: So the discovery of the flat universe supports the infinite universe.
पामेला: It supports it but it doesn’t require it because we could have this hypertoroid. We could have some other really crazy geometries. And there is also the question of if our universe is really big enough it could have all sorts of crazy shapes, crazy geometries where it’s just the little tiny part of the universe that we’re in appears to be flat.
That’s one of the annoying things when you start dealing with really big things. You stretch anything out and it looks flat. You stretch anything out and it looks like it’s constant consistency.
फ्रेजर: But I guess with the Big Bang like imagine an infinite universe, 13.7 billion years ago, the universe was a singularity.
पामेला: सही।
फ्रेजर: And then it started expanding from that. But yet if it’s infinite, was it a singularity of infinite size? I guess.
पामेला: It’s a singularity with no edges. This is where the finite/infinite thing starts to break the human brain. Because part of the definition of a finite universe is that you have a closed geometry. The definition of finite is that you go in a straight line and you move back to the back of your own head.
And with an infinite universe, the geometry, you just keep going. And so you start to get into the, well it’s not finite and infinite in the sense of six dice versus an uncountable infinite number of dice. It’s a does the thing have an edge or not type of boundary.
फ्रेजर: Now we talked a bit about it that WMAP helped close off some of the possibilities that would have said that it is absolutely finite. But left open the possibility for both, then where is the research going now to define it?
पामेला: So now we start looking and saying okay, so we’ve ruled out these possibilities. Smaller dodecahedrons. So with the next generation microwave probe, the Plank mission, we’re going to have higher resolution and greater sensitivity.
So, let’s start figuring out what are the patterns in the hot spots and cold spots in the microwave background that we’d see if you made the universe a little bit bigger and just starting to get the edges of these doors and windows looking in through one another.
What are the patterns in the light if you have it going one way or another way? What are the geometries we haven’t thought of yet?
The ones that get the most attention in the media that people have talked about are basically a soccer ball type shape and a donut type shape that are both highly unsatisfactory. We don’t want the universe to be shaped like that. It hurts our little brains.
So, let’s start thinking outside of the box. Let’s start by figuring out what are the different ways that we can mathematically define something as flat. Which strictly means two parallel lines stay parallel and two lines that start out at right angles to each other stay at right angles to each other.
What are different ways that we can start getting at those geometries and what are the different signals that we would find in the cosmic microwave background if we had these alternative geometries? And let’s start thinking in lots of dimensions.
Let’s start thinking with a box that’s rotated in all sorts of crazy ways that we can’t generally visualize but we can program a computer to create. It becomes the world’s ugliest geometry problem. Then you start trying to figure out what are the limitations if the universe is this big what does it mean?
Unfortunately, all we can ever do is put a lower limit on the size of the universe. If the universe truly is infinite, we’ll never be able to say that with certainty. That’s one of the sad things about this.
At most we’ll be able to say: “The universe is bigger than,†and then state some number.
फ्रेजर: Right, because with this increasing sensitivity of our instruments we will be able to measure the hot and cold spots better and better. Each time that we don’t see the mirror images, then we know that the universe has to be bigger than ‘X .
Then we’ll produce a spacecraft that is even more sensitive and it will have another look at it and say okay, it has to be bigger than ‘Y’.
That’s the best we can do? We can never know for sure?
पामेला: That’s the best we can do.
फ्रेजर: However, when I talk to you, your thinking seems to be that it’s finite, right? That seems to be your synthesis of the science so far. Why is that?
पामेला: At a certain point when you look at multiple lines of evidence you just sort of have to pick the one that your stomach is happiest with. This is where I have to admit that there is no consensus and more people are doing the math for an infinite universe – a little bit easier to do the math that way – than are doing it for a finite universe.
I have problems with the idea of an infinite universe that could be parallel to other infinite universes. That sort of breaks my brain.
Then there is just the notion of “How do you create a singularity that contains everything in an infinite universe that currently has a density of around six hydrogen atoms per cubic meter on average?†How do you create an infinite version of that?
It seems to make more sense in my brain, which favors the cosmology of multiple parallel universes, to have a finite starting point that has a critical density that is evolving as the volume changes and everything balances out but you’re dealing with finite amounts.
Packing multiple infinities side-by-side, my brain says no to that idea. However, I can’t scientifically say that my decision to like that theory is anymore valid than someone else’s decision that the universe should be completely infinite and that there is only one of them and someone else’s idea that there are infinite branching universes.
There could be someone else’s idea that there are finite branching universes. There are so many different things that could be coming together and we don’t observationally have a way of saying who is more right than whom.
फ्रेजर: But you don’t need to bring in all of the multiple universe stuff into this, right? That’s ways of trying to answer problems in quantum theory. Which is a whole other show. Maybe that will be part four?
Then even so, no matter how insane the possibility is, all you have is the evidence. We’re so far beyond where your intuition can help you out. You left your intuition back home in the Savannah in Africa a million years ago. It’s not ready for contemplating an infinite versus a finite universe.
So, what lines of evidence could we possibly have to try and determine and narrow this? Is that all we’ve got is looking at the cosmic microwave background radiation and seeing the edge.
पामेला: Right now, yes. Right now all we can do to define the size of the viewable universe and to place limits on the size of the total universe is to look at the cosmic microwave background. And not place on it some size of the total universe and to study the rate of recession of the objects that are between us in the cosmic microwave background to measure the evolution of the expansion of the universe.
If we don’t actually understand how the rate of expansion has changed with time, we can’t accurately say where that point that admitted the photon from the cosmic ray background that we’re seeing is currently.
So we need to constantly work to refine our values for the expansion rate in the universe at various points in time. And we need to study the microwave background in as much detail as possible.
Through those two sets of observations we can figure out just how far away is that wall of the cosmic microwave background in terms of where are the points that admitted the light that we see now with our current location compared to where those points were when they admitted the light.
We can place limits on well we know the universe is bigger than what we can see. And that’s as good as it gets.
फ्रेजर: All right, so let’s assume then that the universe is finite. I’ll give you this. ब्रह्मांड कितना बड़ा है?
पामेला: Well, a lot of people working on theories are coming up with numbers on the order of it’s about a hundred times bigger than what we can see. So that’s the current mainstream cosmology. About a hundred times bigger than what we can see.
फ्रेजर: Okay, so that would then put us at about 1.5 trillion light years across. Not bad for only 13.7 billion years of expansion.
पामेला: It’s that period of inflation during the first second or so that really allowed us to get to where we are. Without that, we’d probably be able to see everything, but that period of inflation really stretched things out and allows us to only see a small corner of where we live.
फ्रेजर: How much of that was inflation? How big was the universe by the end of inflation? Or was it just like the big accelerant?
पामेला: It’s the big accelerant.
फ्रेजर: Right, so what then finally, percentage of the whole universe is our observable universe? In a finite universe?
पामेला: Oh, so now you’re starting to deal with cubes. You have to figure if the radius is 100 times of what we’re able to see, you take one over 100 cubed and that’s the fraction we see. So 100 cubed is 10 to the 6th so one over 10,000th. We see one over 10,000 the universe.
फ्रेजर: One 10,000th of the universe? At our current minimum size of the universe based on what we see with WMAP.
पामेला: Kinda cool?
फ्रेजर: Kinda sad. I just want to see more of the universe. I like to travel I have to say so….
पामेला: It gets worse though, think of this. In the part of the universe we can see, we only see four percent of the mass. What we can see is visible matter.
फ्रेजर: Right, the rest being dark matter, dark energy and just black matter that we can’t see. It’s regular matter just not shiny.
पामेला: So we see four percent of one ten thousandth of the universe.
फ्रेजर: And we only see what’s happening now or recently in a tiny little sphere around the earth. The further back we look, it’s old news. It would be like the only newspaper that shows up is news from the 14th century. Not really helping.
News from Japan is what happened in the 18th century. That would suck. Could you make it any sadder?
पामेला: No, I’m happy.
फ्रेजर: All right, so just to reiterate, we can see just a teeny tiny fraction of the universe and an even teeny tinier fraction of what actually is and a teeny tiny fraction of what’s happening right now.
Well, I think we are done with this trilogy of the center, the shape and the size of the universe. I know we’ll get some questions. So send them in and maybe we’ll queue up our next question show to try and run through all of the headaches we’ve caused people and try and give you some relief.

यह प्रतिलेख ऑडियो फ़ाइल से सटीक मेल नहीं है। इसे स्पष्टता के लिए संपादित किया गया है।
Transcription and editing by Cindy Leonard


How Big Is Earth?

Earth, the third planet from the sun, is the fifth-largest planet in the solar system only the gas giants Jupiter, Saturn, Uranus and Neptune are bigger. Earth is the largest of the terrestrial planets of the inner solar system, bigger than Mercury, Venus and Mars. But how big is Earth, exactly?

Radius, diameter and circumference

The radius of Earth at the equator is 3,963 miles (6,378 kilometers), according to NASA's Goddard Space Flight Center in Greenbelt, Maryland. However, Earth is not quite a sphere. The planet's rotation causes it to bulge at the equator. Earth's polar radius is 3,950 miles (6,356 km) &mdash a difference of 13 miles (22 km).

Using those measurements, the equatorial circumference of Earth is about 24,901 miles (40,075 km). However, from pole to pole &mdash the meridional circumference &mdash Earth is only 24,860 miles (40,008 km) around. Our planet's shape, caused by the flattening at the poles, is called an oblate spheroid.

Those numbers make Earth just slightly bigger than Venus, whose equatorial radius is about 3,761 miles (6,052 km). Mars is much smaller than both Earth and Venus, with an equatorial radius of just 2,110 miles (3,396 km).

But Earth and the other rocky planets are much smaller than the gas giants. For example, more than 1,300 Earths could fit inside Jupiter.

Density, mass and volume

Earth's density is 5.513 grams per cubic centimeter, according to NASA. Earth is the densest planet in the solar system because of its metallic core and rocky mantle. Jupiter, which is 318 more massive than Earth, is less dense because it is made primarily of gases, such as hydrogen.

Earth's mass is 6.6 sextillion tons (5.9722 x 10 24 kilograms). Its volume is about 260 billion cubic miles (1 trillion cubic kilometers).

The total surface area of Earth is about 197 million square miles (510 million square km). About 71% of our planet is covered by water and 29% by land. For comparison, the total surface area of Venus is roughly 178 million square miles (460 million square km) , and that of Mars is about 56 million square miles (144 million square km)

Highest and lowest points

Mount Everest is the highest place on Earth above sea level, at 29,032 feet (8,849 meters), but it is not the highest point on Earth &mdash that is, the place most distant from the center of the Earth. That distinction belongs to Mount Chimaborazo in the Andes Mountains in Ecuador, according to the U.S. National Oceanic and Atmospheric Administration (NOAA). Although Chimaborazo is about 10,000 feet (3,048 m) shorter (relative to sea level) than Everest, this mountain is about 6,800 feet (2,073 m) farther into space because of the equatorial bulge.

Everest and Chimborazo are nowhere near the tallest mountains in the solar system, however. The peak rising from Rheasilvia Crater on the asteroid Vesta, for example, is about 14 miles (22.5 km) tall. Mars' huge Olympus Mons volcano is nearly as high, at 13.6 miles (21.9 km), and it covers an area the size of the state of Arizona.

The lowest point on Earth is Challenger Deep in the Mariana Trench in the western Pacific Ocean, according to NOAA. It reaches down about 36,200 feet (11,034 m) below sea level.